58 research outputs found

    Photoassociation spectra and the validity of the dipole approximation for weakly bound dimers

    Full text link
    Photoassociation (PA) of ultracold metastable helium to the 2s2p manifold is theoretically investigated using a non-perturbative close-coupled treatment in which the laser coupling is evaluated without assuming the dipole approximation. The results are compared with our previous study [Cocks and Whittingham, Phys. Rev. A 80, 023417 (2009)] that makes use of the dipole approximation. The approximation is found to strongly affect the PA spectra because the photoassociated levels are weakly bound, and a similar impact is predicted to occur in other systems of a weakly bound nature. The inclusion or not of the approximation does not affect the resonance positions or widths, however significant differences are observed in the background of the spectra and the maximum laser intensity at which resonances are discernable. Couplings not satisfying the dipole selection rule |J-1| <= J' <= |J+1| do not lead to observable resonances.Comment: 5 pages, 2 figures; Minor textual revision

    Determining cross sections from transport coefficients using deep neural networks

    Full text link
    We present a neural network for the solution of the inverse swarm problem of deriving cross sections from swarm transport data. To account for the uncertainty inherent to this somewhat ill-posed inverse problem, we train the neural network using cross sections from the LXCat project, paired with associated transport coefficients found by the numerical solution of Boltzmann's equation. The use of experimentally measured and theoretically calculated cross sections for training encourages the network to avoid unphysical solutions, such as those containing spurious energy-dependent oscillations. We successfully apply this machine learning approach to simulated swarm data for electron transport in helium, separately determining its elastic momentum transfer and ionisation cross sections to within an accuracy of 4%4\% over the range of energies considered. Our attempt to extend our method to argon was less successful, although the reason for that observation is well-understood. Finally, we explore the feasibility of simultaneously determining cross sections of helium using this approach. We have some success here, determining elastic, total n=2n=2 excitation and ionisation cross sections to 10%10\%, 20%20\% and 25%25\% accuracy, respectively. We are unsuccessful in properly unfolding the separate n=2n=2 singlet and triplet excitation cross sections of helium, but this is as expected given their similar threshold energies.Comment: 20 pages, 9 figures, submitted to Plasma Sources Science and Technolog

    `In pursuit of the Nazi mind?' the deployment of psychoanalysis in the allied struggle against Germany

    Get PDF
    This paper discusses how psychoanalytic ideas were brought to bear in the Allied struggle against the Third Reich and explores some of the claims that were made about this endeavour. It shows how a variety of studies of Fascist psychopathology, centred on the concept of superego, were mobilized in military intelligence, post-war planning and policy recommendations for ‘denazification’. Freud's ideas were sometimes championed by particular army doctors and government planners; at other times they were combined with, or displaced by, competing, psychiatric and psychological forms of treatment and diverse studies of the Fascist ‘personality’. This is illustrated through a discussion of the treatment and interpretation of the deputy leader of the Nazi Party, Rudolf Hess, after his arrival in Britain in 1941

    Laser Intensity Dependence of Photoassociation in Ultracold Metastable Helium

    Get PDF
    Photoassociation of spin-polarized metastable helium to the three lowest rovibrational levels of the J=1, 0u+0_u^+ state asymptoting to 2s3s {}^{3}S1+2p3_{1}+2p {}^{3}P0_{0} is studied using a second-order perturbative treatment of the line shifts valid for low laser intensities, and two variants of a non-perturbative close-coupled treatment, one based upon dressed states of the matter plus laser system, and the other on a modified radiative coupling which vanishes asymptotically, thus simulating experimental conditions. These non-perturbative treatments are valid for arbitrary laser intensities and yield the complete photoassociation resonance profile. Both variants give nearly identical results for the line shifts and widths of the resonances and show that their dependence upon laser intensity is very close to linear and quadratic respectively for the two lowest levels. The resonance profiles are superimposed upon a significant background loss, a feature for this metastable helium system not present in studies of photoassociation in other systems, which is due to the very shallow nature of the excited state 0u+0_u^+ potential. The results for the line shifts from the close-coupled and perturbative calculations agree very closely at low laser intensities.Comment: 14 pages, 7 figures, title altered, text reduce

    Foundations and interpretations of the pulsed-Townsend experiment

    Get PDF
    The pulsed-Townsend (PT) experiment is a well known swarm technique used to measure transport properties from a current in an external circuit, the analysis of which is based on the governing equation of continuity. In this paper, the Brambring representation (1964 Z. Phys. 179 532) of the equation of continuity often used to analyse the PT experiment, is shown to be fundamentally flawed when non-conservative processes are operative. The Brambring representation of the continuity equation is not derivable from Boltzmann's equation and consequently transport properties defined within the framework are not clearly representable in terms of the phase-space distribution function. We present a re-analysis of the PT experiment in terms of the standard diffusion equation which has firm kinetic theory foundations, furnishing an expression for the current measured by the PT experiment in terms of the universal bulk transport coefficients (net ionisation rate, bulk drift velocity and bulk longitudinal diffusion coefficient). Furthermore, a relationship between the transport properties previously extracted from the PT experiment using the Brambring representation, and the universal bulk transport coefficients is presented. The validity of the relationship is tested for two gases Ar and SF6, highlighting also estimates of the differences

    Simulating the Feasibility of Using Liquid Micro-Jets for Determining Electron–Liquid Scattering Cross-Sections

    Get PDF
    The extraction of electron–liquid phase cross-sections (surface and bulk) is proposed through the measurement of (differential) energy loss spectra for electrons scattered from a liquid micro-jet. The signature physical elements of the scattering processes on the energy loss spectra are highlighted using a Monte Carlo simulation technique, originally developed for simulating electron transport in liquids. Machine learning techniques are applied to the simulated electron energy loss spectra, to invert the data and extract the cross-sections. The extraction of the elastic cross-section for neon was determined within 9% accuracy over the energy range 1–100 eV. The extension toward the simultaneous determination of elastic and ionisation cross-sections resulted in a decrease in accuracy, now to within 18% accuracy for elastic scattering and 1% for ionisation. Additional methods are explored to enhance the accuracy of the simultaneous extraction of liquid phase cross-sections

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
    corecore